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A Note on the Probability Distribution of Phases in a Non-eentrosymmetric Crystal with a 
Degree of Centrosymmetry. 

II. The Case of a Crystal with Type-II Degree of Centrosymmetry 
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The nomenclature and parameters needed for characterizing two different types of degrees of centro- 
symmetry in a non-centrosymmetric crystal are introduced. The probability distribution of the phase 
angles of reflexions for the type-II case is worked out and this is used to obtain the probable fraction 
of reflexions for which the magnitude of the phase angles would deviate from the centrosymmetric 
values of 0 or zc by any given amount e0 corresponding to different type-II degrees of centrosymmetry. 

Introduction 

A non-centrosymmetric crystal may exhibit a degree 
of centrosymmetry due to two independent causes 
(Srinivasan, Swaninathan & Chacko, 1972; Srinivasan, 
1965). In this note we shall, after introducing the no- 
menclature, notation and parameters, derive the prob- 
ability distribution of the phase angles of reflexions for 
the type-II case. This distribution is also used to dis- 
cuss (under specific conditions) whether it would be 
more difficult to refine the structure of a non-centro- 
symmetric crystal with type-I or type-II degrees of cen- 
trosymmetry. 

Nomenclature, notation and parameters for 
characterizing the degrees of centrosymmetry of a 

non-centrosymmetric crystal 

Consider a non-centrosymmetric crystal (space group 
P1) containing a large number (N) of similar atoms 
in the unit cell. Suppose the structure has an approxi- 
mate centre of symmetry. Thus, if we choose the cen- 
troid of the unit cell to be the origin, the positions of 
these N atoms could be written as rj ( j=  1 to N/2) and 
- r i + A r  J (j'= 1 to N/2) where the Arfs are mutually 
independent random vectors which are independent of 
the rfs.  We shall define the degree of centrosymmetry 
exhibited by such a type of non-centrosymmetric crys- 
tal to be type I. The probability distributions of inten- 
sities and phases of reflexions for such a case have been 
derived earlier (Parthasarathy & Parthasarathi, 1974; 
Parthasarathi & Parthasarathy, 1974; hereafter PP 1 and 
PP2 respectively) by assuming the Ar/s  to obey a 
Gaussian distribution. Evidently the quantity (IArl) 
(=  [1/(N2)] Z IArjI) is a good measure of the degree of 
centrosymmetry in such a crystal. It is related to the 
parameter D [=(cos  2rcH. Ar), see equation (5) of 
PP1] which takes the values 0 and 1 for the ideally non- 
centrosymmetric and ideally centrosymmetric cases re- 
spectively. 

A non-centrosymmetric crystal can also exhibit a 
degree of centrosymmetry when its unit cell consists 
of two groups of atoms such that one group consisting 
of Arc atoms is centrosymmetric and the other consis- 
ting of N n ( = N - N c )  atoms is ideally non-centrosym- 
metric. A molecule consisting of a benzene ring with 
a non-centrosymmetric group of atoms attached to it 
and crystallizing in space group P 1 is an example. We 
define the degree of centrosymmetry exhibited by such 
a crystal to be type II. Evidently the degree of centro- 
symmetry in such a crystal depends on the relative 
proportions of atoms in the Nc and N,, parts. A good 
measure of the degree of centrosymmetry in this case 
(i.e. similar-atom case) could therefore be the quantity 
r defined by 

r = Nd(N ~ + N,,) = N d N .  (1) 

It is obvious that r assumes the values 0 and 1 for the 
ideally non-centrosymmetric and ideally centrosym- 
metric cases respectively and has intermediate values 
which correspond to different degrees of centrosymme- 
try. Though the probability distribution of X-ray inten- 
sities for this situation has been worked out by Srini- 
vasan (1965) and Parthasarathy (1966), that for the 
phases is not available. Owing to the importance of 
phases in crystal structure analysis this distribution is 
worked out in the next section by making use of the 
property of normal variates. 

For brevity we shall use the symbols NC, NC'  and 
NC"  to denote an ideally non-centrosymmetric crys- 
tal, a non-centrosymmetric crystal with type-I degree 
of centrosymmetry and a non-centrosymmetric crystal 
with type-II degree of centrosymmetry respectively. 

Derivation of the probability distribution of 
the phase angles 

Define the origin to be at the centre of the Arc group 
of atoms. From the structure-factor relation, 

* Contribution No. 399. FN=FNc+FN,=AN+iBN=IFNI exp (i~), (2) 
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it follows that* 

(IfnlZ)=(IfNdz)+(IFn.12), i.e. a g = a ~ c + a ~ , .  (3) 

Since all the atoms in the unit cell are assumed to be 
similar, 

a ~ d a ~ = N d N = r  , 

From (2) it follows that 

AN= ANc + Am. , 

2 2~ an.lan N . / N =  1 - r  . (4) 

~n=Sn..  (5) 
Since the N¢ group is taken to satisfy the requirements 
of the centric and the N~ group the acentric Wilson 
distribution, it follows from Wilson (1949) that An~ 
and An. are normally distributed with parameters 
(0 ,a~)  and (0,½a~.) respectively. Since the Nc and N. 
groups are independent, An¢ and An. are independent 
variables and hence their sum A n c + A n . = ( A n ) w i l l  
also be normally distributed with parameters (0, a~c+ 
½ag.) (see p. 212 of Cram6r, 1962). Hence we have 

P(Au)=[Zn(a~+½tr~,)]- ~/2 exp [ -  A Z~/Z(a~c+ ½a~,,)] . (6) 

Since Bn=Bn. ,  the p.d.f, of Bn will be that of BN. 
which has a normal distribution with parameter 
(0,½ag.) (see Wilson, 1949). That is 

e(Bn) = (na~.)- 1/2 exp [ -  B~/cr~.]. (7) 

From (6) and (7) we obtain the joint p.d.f, of An and 
Bn to be 

1 
P(AN, BN) = 

Aa 
xexp - a~.+2a~c cry. " (8) 

Transforming to plane polar coordinates (IF~l,ct) we 
obtain from (8) 

e(IFnl,=)= IFnl 
n~n.gaa. + 2aL 

 exp[ oo,  
z 2 + . ( 9 )  

o'g. + 2ant a~. ] J  

The joint p.d.f, ofyn (=  IFNI/CrN) and e will therefore be 

exp[ y (cos2 + sin2__ )] 
P ( Y m ~ ) -  nVlZ--~  1 +r 1 - r  

[ (lrcos2 )]  10, 
n ~ e x p  - Y g  1 - r  z " 

A comparison of (10) with (13) of PP1 shows that 
these two equations are identical in the functional form. 
The quantity r of the present case plays the same role 

Nc Nn N 

,1= i  k = l  l = 1  

as D in (13) of PP1. It follows that P ( N )  and 
Pr(~0,n-~0) [which represents the fractional number 
of reflexions for which the magnitude of the phase 
angles would lie in the interval (~0, n -  ~0)] for the pres- 
ent case could be readily obtained respectively from 
(3) and (6) of PP2 by replacing D by r. Thus we have, 
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Fig. 1. Representation of Pr(=0, n-=0)  as a function of ~0 for 

a non-centrosymmetric crystal with different type-I[ degrees 
of centrosymmetry. The broken line corresponds to the 
ideally non-centrosymmetric crystal. 
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Fig. 2. Comparison of the function Pr(ct0,n-ct0) for typical 
non-centrosymmetric crystals with type-I and type-II de- 
grees of centrosymmetry. The curve marked NC" is for the 
type-I case corresponding to S=0.4 A -1 and (]Ar[)=0.1 A, 
that marked NC" is for the type-II case with r=0.5 and 
that marked NC is for the ideally non-centrosymmetric case. 



S. P A R T H A S A R A T H Y  A N D  V. P A R T H A S A R A T H I  59 

P ( I ~ I )  = 

Pr (~o, n-Oeo)= 1 - - -  

~1 - r  z 
n ( l _ r  cos2c0,  0 < ~ < n  (11) 

2 sin-1 I V  (1 +r )  sinZ ~0 ] 
i :-;r c~2~0J ' 

0 < ~ 0 < n / 2 .  (12) 

Discussion of the results 

The functional dependence of Pr(o~o,n-Oeo) on ~0 is 
shown in Fig. 1 for different values of r (which is a meas- 
ure of the type-II degree of centrosymmetry). It is in- 
teresting to see that even when 50% of the atoms in the 
unit cell have a centrosymmetric configuration (i.e. 
r~0 .5 )  the distribution of the phase angles is much 
closer to the distribution expected for the ideally non- 
centrosymmetric case than for the ideally centrosym- 
metric case. It is useful to note that though Pr(c~o, n -  C~o) 
for the type-I case is a function of (sin 0)/2 ( =  S, say), 
it is independent of S for the type-II case considered 
here since r is practically a constant for a given crystal. 

It would be interesting to make a comparative study 
of the variation of Pr(c~o, n - e 0 )  as a function of c~0 for 
typical non-centrosymmetric crystals with type-I and 
type-II degrees of centrosymmetry. We shall consider, 
for example, a non-centrosymmetric crystal with type-I 
degree of centrosymmetry having ([Ar[)=0.1 A and 
a non-centrosymmetric crystal with type-II degree of 

centrosymmetry with r = 0.5. Since Pr(ao, 7r- ~o) for the 
former is a function of S, we shall set S = 0 . 4  A -1 
which is a typical value for Cu Ka radiation. The rele- 
vant curves are shown in Fig. 2. It is seen that while 
for the type-II case about 55% of the reflexions have 
phases in the interval 30 ° to 150 ° (whatever the value 
of S), for the type-I case only about 20% of the 
reflections (for S = 0 . 4  A -1 and ( IAr l )=0"l  A) have 
phases in the interval 30 ° and 150 ° . Thus, under the 
conditions stated above, the type-I case would be more 
difficult to refine than the type-II case. 

One of the authors (V. P.) thanks the Council of 
Scientific and Industrial Research, New Delhi, India 
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General Theory of Coincidence-Site Lattices, Reduced 0-Lattices and Complete 
Pattern-Shift Lattices in Arbitrary Crystals 
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The definition of a lattice and its superlattice is given algebraically. A coincidence site lattice (CSL) is 
defined as an intersection lattice of any two crystal lattices, and a complete pattern-shift lattice (DSCL) 
as the set theoretically smallest lattice containing both crystal lattices as superlattices. In the case where 
the two lattices are related by a non-singular matrix (having non-zero determinant), the so-called 
0-lattice may be generated from the two crystal lattices. Any translation of the 0-1attice by all the vectors 
of one of the crystal lattices forms a lattice, i.e. a reduced 0-lattice. As a result of the theory of groups 
and numbers, the reduced 0-lattice (abbreviated to ROL) is homomorphic to the DSCL. It is shown that 
the factor group of all cosets of lattice 1 in the DSCL (in the ROL) is isomorphic with the factor group of all 
cosets of the CSL in lattice 2 (in the 0-lattice). The volume of a unit cell is derived for all the lattices gener- 
ated by the two crystal lattices. Secondly, the reciprocal of a lattice is introduced and the reciprocity 
between the CSL and the DSCL determined by the reciprocals of the two crystal lattices is shown as a 
special case of a theorem mentioned about modules over a ring. Finally a complete diagram of rela- 
tionships between b-lattices and 0-lattices for direct lattices and reciprocal lattices is given. 

Introduction 

Since Bollman's 0-lattice theory (Bollmann, 1967 a, b, 
1970; Bollmann & Perry 1969; Warrington & Boll- 

mann, 1972) was derived, many theoretical studies of 
the coincidence-site lattice (CSL) and the complete 
pattern-shift lattice (DSCL) have been made. In 
particular, Grimmer has recently developed a general 


